Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.187
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 625-633, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621866

RESUMO

Extracts are important intermediates in the production of traditional Chinese medicines preparations. The drying effect of extracts will directly affect the subsequent production process and the quality of the preparation. To meet the requirements of high drug loading, short time consumption, and simple production process of personalized traditional Chinese medicine preparations, this study explored the application of multi-program microwave vacuum drying process in the extract drying of personalized traditional Chinese medicine preparations. The influencing factors of microwave vacuum drying process were investigated for 5 excipients and 40 prescriptions. Taking the feasibility of drying, drying rate, drying time, and dried extract status as indicators, this study investigated the feeding requirements of microwave vacuum drying. With the dried extract status as the evaluation indicator, the three drying programs(A, B, and C) were compared to obtain the optimal drying condition. The experimental results showed that the optimal feeding conditions for microwave vacuum drying were material layer thickness of 2 cm and C program(a total of 7 drying processes), which solved the problem of easy scorching in microwave drying with process management. Furthermore, the preset moisture content of the dried extract in microwave drying should be 4%-5%, so that the dried extract of traditional Chinese medicine preparation had uniform quality, complete drying, and no scorching. This study lays a foundation for the application of microwave drying in the production of traditional Chinese medicine preparations, promoting the high-quality development of personalized traditional Chinese medicine preparations.


Assuntos
Medicina Tradicional Chinesa , Micro-Ondas , Vácuo , Dessecação/métodos , Extratos Vegetais
2.
Biochem Biophys Res Commun ; 710: 149857, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583232

RESUMO

Molecular mobility of intracellular water is a crucial parameter in the study of the mechanism of desiccation tolerance. As one of the parameters that reflecting molecular mobility, the viscosity of intracellular water has been found intimately related with the protection of the phospholipid membrane because it quantifies the diffusion ability of water and mass in the intracellular environment. In this work we measured the intracellular water relaxation time, which can be translated into water viscosity, by using a previously established NIR-dielectric method to monitor the drying process of baker's yeast and Jurkat cells with different desiccation tolerance. We found that intracellular saccharide can significantly decrease the intracellular water viscosity. Also, the intracellular water diffusion coefficient obtained from this method were found in good agreement with other reports.


Assuntos
Fermento Seco , Humanos , Água/química , Espectroscopia de Luz Próxima ao Infravermelho , Células Jurkat , Saccharomyces cerevisiae/química , Dessecação
3.
Compr Rev Food Sci Food Saf ; 23(3): e13346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634193

RESUMO

Osmotic dehydration (OD) is an efficient preservation technology in that water is removed by immersing the food in a solution with a higher concentration of solutes. The application of OD in food processing offers more benefits than conventional drying technologies. Notably, OD can effectively remove a significant amount of water without a phase change, which reduces the energy demand associated with latent heat and high temperatures. A specific feature of OD is its ability to introduce solutes from the hypertonic solution into the food matrix, thereby influencing the attributes of the final product. This review comprehensively discusses the fundamental principles governing OD, emphasizing the role of chemical potential differences as the driving force behind the molecular diffusion occurring between the food and the osmotic solution. The kinetics of OD are described using mathematical models and the Biot number. The critical factors essential for optimizing OD efficiency are discussed, including product characteristics, osmotic solution properties, and process conditions. In addition, several promising technologies are introduced to enhance OD performance, such as coating, skin treatments, freeze-thawing, ultrasound, high hydrostatic pressure, centrifugation, and pulsed electric field. Reusing osmotic solutions to produce innovative products offers an opportunity to reduce food wastes. This review explores the prospects of valorizing food wastes from various food industries when formulating osmotic solutions for enhancing the quality and nutritional value of osmotically dehydrated foods while mitigating environmental impacts.


Assuntos
Desidratação , Conservação de Alimentos , Humanos , Dessecação , Água , Tecnologia
4.
Food Res Int ; 184: 114264, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609240

RESUMO

Rice is an important staple food in the world. Drying is an important step in the post-harvest handling of rice and can influence rice qualities and thus play a key role in determining rice commercial and nutritional value. In rice processing, traditional drying methods may lead to longer drying times, greater energy consumption, and unintended quality losses. Thus, it is imperative to improve the physical, chemical, and milling properties of rice while preserving its nutritional value, flavor, and appearance as much as possible. Additionally, it is necessary to increase the efficiency with which heat energy is utilized during the thermal processing of freshly harvested paddy. Moreover, this review provides insights into the current application status of six different innovative drying technologies such as radio frequency (RF) drying, microwave (MW) drying, infrared (IR) drying, vacuum drying (VD), superheated steam (SHS) drying, fluidized bed (FB) drying along with their effect on the quality of rice such as color, flavor, crack ratio, microstructure and morphology, bioactive components and antioxidant activity as well asstarch content and glycemic index. Dielectric methods of drying due to volumetric heating results in enhanced drying rate, improved heating uniformity, reduced crack ratio, increased head rice yield and better maintain taste value of paddy grains. These novel emerging drying techniques increased the interactions between hydrated proteins and swollen starch granules, resulting in enhanced viscosity of rice flour and promoted starch gelatinization and enhanced antioxidant activity which is helpful to produce functional rice. Moreover, this review not only highlights the existing challenges posed by these innovative thermal technologies but also presents potential solutions. Additionally, the combination of these technologies to optimize operating conditions can further boost their effectiveness in enhancing the drying process. Nevertheless, future studies are essential to gain a deeper understanding of the mechanism of quality changes induced by emerging processing technologies. This knowledge will help expand the application of these techniques in the rice processing industry.


Assuntos
Oryza , Antioxidantes , Dessecação , Alimentos , Amido
5.
Trop Anim Health Prod ; 56(4): 139, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656618

RESUMO

We aimed to evaluate the effects of different drying methods for banana residues on the energy metabolism and respirometry of growing lambs. Twenty Santa Inês x Dorper lambs were fed five experimental diets: Tifton 85 grass hay (Control), shade-dried banana leaf hay (LH Shade), shade-dried pseudostem banana hay (PH Shade), sun-dried banana leaf hay (LH Sun), and sun-dried banana pseudostem hay (PH Sun). Nutrient intake and digestibility were assessed in metabolic cages, whereas O2 consumption and CO2, methane, and heat production were measured in a respirometry chamber with animals fed at maintenance and ad libitum levels. Nutrient and energy intake was not influenced by diet. Pseudostem hay had higher apparent digestibility of dry matter (71.5%), organic matter (72.4%), and neutral detergent fiber (58.0%). However, this led to greater energy loss in the form of methane (12.1%). The banana residue hays and drying methods did not alter oxygen consumption, CO2 production, or heat production of animals fed ad libitum or during maintenance. On the other hand, the use of leaf hay resulted in a reduction of 24.7% in enteric methane production of animals fed ad libitum. The inclusion of pseudostem hay is recommended in sheep feedlot diet. This residue provided greater use of DM, however promoted a greater loss of energy in the form of methane, resulting in similar energy consumption. The drying methods did not reduce the availability of nutrients and the sun drying method is recommended, since it is a faster drying method.


Assuntos
Ração Animal , Dieta , Digestão , Metabolismo Energético , Musa , Animais , Musa/química , Ração Animal/análise , Dieta/veterinária , Masculino , Carneiro Doméstico/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Consumo de Oxigênio , Dessecação
6.
Compr Rev Food Sci Food Saf ; 23(3): e13347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38650473

RESUMO

The contribution of dehydration to the growing market of food powders from slurry/liquid matrices is inevitable. To overcome the challenges posed by conventional drying technologies, several innovative approaches have emerged. However, industrial implementation is limited due to insufficient information on the best-suited drying technologies for targeted products. Therefore, this review aimed to compare various conventional and emerging dehydration technologies (such as active freeze, supercritical, agitated thin-film, and vortex chamber drying) based on their fundamental principles, potential applications, and limitations. Additionally, this article reviewed the effects of drying technologies on porosity, which greatly influence the solubility, rehydration, and stability of powder. The comparison between different drying technologies enables informed decision-making in selecting the appropriate one. It was found that active freeze drying is effective in producing free-flowing powders, unlike conventional freeze drying. Vortex chamber drying could be considered a viable alternative to spray drying, requiring a compact chamber than the large tower needed for spray drying. Freeze-dried, spray freeze-dried, and foam mat-dried powders exhibit higher porosity than spray-dried ones, whereas supercritical drying produces nano-porous interconnected powders. Notably, several factors like glass transition temperature, drying technologies, particle aggregation, agglomeration, and sintering impact powder porosity. However, some binders, such as maltodextrin, sucrose, and lactose, could be applied in controlled agglomeration to enhance powder porosity. Further investigation on the effect of emerging technologies on powder properties and their commercial feasibility is required to discover their potential in liquid drying. Moreover, utilizing clean-label drying ingredients like dietary fibers, derived from agricultural waste, presents promising opportunities.


Assuntos
Dessecação , Pós , Porosidade , Pós/química , Dessecação/métodos , Liofilização/métodos , Manipulação de Alimentos/métodos
7.
Health Phys ; 126(6): 397-404, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568172

RESUMO

ABSTRACT: Experiments that examine the impacts of subnatural background radiation exposure provide a unique approach to studying the biological effects of low-dose radiation. These experiments often need to be conducted in deep underground laboratories in order to filter surface-level cosmic radiation. This presents some logistical challenges in experimental design and necessitates a model organism with minimal maintenance. As such, desiccated yeast ( Saccharomyces cerevisiae ) is an ideal model system for these investigations. This study aimed to determine the impact of prolonged sub-background radiation exposure in anhydrobiotic (desiccated) yeast at SNOLAB in Sudbury, Ontario, Canada. Two yeast strains were used: a normal wild type and an isogenic recombinational repair-deficient rad51 knockout strain ( rad51 Δ). Desiccated yeast samples were stored in the normal background surface control laboratory (68.0 nGy h -1 ) and in the sub-background environment within SNOLAB (10.1 nGy h -1 ) for up to 48 wk. Post-rehydration survival, growth rate, and metabolic activity were assessed at multiple time points. Survival in the sub-background environment was significantly reduced by a factor of 1.39 and 2.67 in the wild type and rad51 ∆ strains, respectively. Post-rehydration metabolic activity measured via alamarBlue reduction remained unchanged in the wild type strain but was 26% lower in the sub-background rad51 ∆ strain. These results demonstrate that removing natural background radiation negatively impacts the survival and metabolism of desiccated yeast, highlighting the potential importance of natural radiation exposure in maintaining homeostasis of living organisms.


Assuntos
Dessecação , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos da radiação , Rad51 Recombinase/metabolismo , Exposição à Radiação/efeitos adversos , Exposição à Radiação/análise , Doses de Radiação
8.
Food Chem ; 447: 138983, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38493685

RESUMO

This paper investigated the effect of catalytic infrared blanching combined with ultrasound pretreatment on quality and waxy structure of blueberries. Different blueberry samples were prepared, including control (untreated) and samples treated by hot water blanching (HB), catalytic infrared blanching (CIB), ultrasound-catalytic infrared blanching (US-CIB), and catalytic infrared blanching-ultrasound (CIB-US). The effect of different pretreatments on the microstructure of blueberry epidermis was studied. The drying time of blueberries after HB, US-CIB, and CIB-US was decreased by 11.61%, 17.54%, and 17.27%, respectively, compared with control (33.75 h), and drying efficiency was significantly improved. Blueberries after pretreatments had higher content of polyphenol and anthocyanin, with an increase of 29.51-44.21% in phenol and 8.81-20.80% in anthocyanin, the antioxidant capacity of blueberries was also better than control and CIB enhanced the antioxidant capacity of blueberries. CIB-US can be used as an efficient pretreatment method for blueberry drying.


Assuntos
Antioxidantes , Mirtilos Azuis (Planta) , Antioxidantes/química , Mirtilos Azuis (Planta)/química , Antocianinas , Dessecação/métodos , Água/química
9.
Int J Pharm ; 655: 123925, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38518870

RESUMO

Spray drying is increasingly being applied to process biopharmaceuticals, particularly monoclonal antibodies (mAbs). However, due to their protein nature, mAbs are susceptible to degradation when subjected to various stresses during a drying process. Despite extensive research in this domain, identifying the appropriate formulation composition and spray drying conditions remains a complex challenge, requiring further studies to enhance the understanding on how process and formulation parameters impact mAb stability in reconstituted solutions. This research aims to explore spray drying as technique for producing pharmaceutical mAbs-based powders intended for reconstitution and subcutaneous injection. In the initial phase of this study, using a model mAb (mAb-A), the influence of dissociated and coupled process stresses on protein stability after solution reconstitution was investigated. The findings revealed a detrimental interplay of mechanical, interfacial, and thermal/dehydration stresses on mAb-A stability, notably characterized by an increase in protein aggregation. Subsequently, in a second phase, the study delved into the impact of spray drying processing conditions, the level of excipients, and protein concentration on mAb-A aggregation in reconstituted solutions. The obtained results highlighted the critical role of formulation composition as a parameter deserving further study, specifically concerning the selection of type and concentration of stabilizers to be added in the liquid mAb-A solution to be dried.


Assuntos
Química Farmacêutica , Secagem por Atomização , Química Farmacêutica/métodos , Anticorpos Monoclonais , Dessecação/métodos , Injeções Subcutâneas , Pós , Liofilização
10.
J Environ Manage ; 356: 120665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518498

RESUMO

Struvite precipitation from source-separated urine is crucial for waste utilization and sustainability. However, after precipitation, the high moisture content of struvite necessitates an additional drying process that can be costly and inefficient. In the present study, the performance of different drying methods-open sun drying, air drying, conventional drying (20-100 °C), and microwave drying (180-720 W) on the quality of struvite obtained from source-separated urine through electrocoagulation using Mg-Mg electrodes were evaluated. It was found that higher temperatures and power in the convective oven and microwave resulted in higher diffusivity (10-9-10-7 m2s-1), leading to reduced drying times. Different models were employed to comprehend the drying mechanism, and the one with the highest correlation coefficient (R2 = 0.99) and the lowest statistical values was selected. The key findings indicated that higher power and temperature levels were more cost-effective. However, characterization of the dried struvite using X-ray diffraction and Fourier-transformed infrared spectroscopy, disintegration of struvite crystals at temperatures above 60 °C in the conventional oven and 180 W in the microwave oven was observed. Based on the results, we conclude that sun drying is a cost-effective and environmentally friendly alternative for drying struvite without compromising its quality.


Assuntos
Dessecação , Estruvita , Análise Custo-Benefício , Dessecação/métodos , Temperatura , Difração de Raios X
11.
Proc Natl Acad Sci U S A ; 121(14): e2317254121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551840

RESUMO

Pv11 is the only animal cell line that, when preconditioned with a high concentration of trehalose, can be preserved in the dry state at room temperature for more than one year while retaining the ability to resume proliferation. This extreme desiccation tolerance is referred to as anhydrobiosis. Here, we identified a transporter that contributes to the recovery of Pv11 cells from anhydrobiosis. In general, the solute carrier 5 (SLC5)-type secondary active transporters cotransport Na+ and carbohydrates including glucose. The heterologous expression systems showed that the transporter belonging to the SLC5 family, whose expression increases upon rehydration, exhibits Na+-dependent trehalose transport activity. Therefore, we named it STRT1 (sodium-ion trehalose transporter 1). We report an SLC5 family member that transports a naturally occurring disaccharide, such as trehalose. Knockout of the Strt1 gene significantly reduced the viability of Pv11 cells upon rehydration after desiccation. During rehydration, when intracellular trehalose is no longer needed, Strt1-knockout cells released the disaccharide more slowly than the parental cell line. During rehydration, Pv11 cells became roughly spherical due to osmotic pressure changes, but then returned to their original spindle shape after about 30 min. Strt1-knockout cells, however, required about 50 min to adopt their normal morphology. STRT1 probably regulates intracellular osmolality by releasing unwanted intracellular trehalose with Na+, thereby facilitating the recovery of normal cell morphology during rehydration. STRT1 likely improves the viability of dried Pv11 cells by rapidly alleviating the significant physical stresses that arise during rehydration.


Assuntos
Chironomidae , Dessecação , Animais , Trealose/metabolismo , Larva/metabolismo , Chironomidae/genética , Insetos/metabolismo , Linhagem Celular
12.
Food Res Int ; 182: 114142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519160

RESUMO

Drying is a necessary step in the microalgae production chain to reduce microbial load and oxidative degradation of the end product. Depending on the differences in applied temperature and treatment time, the process of drying can have a substantial impact on protein quality and aroma, important characteristics determining the incorporation potential in food products. In this study, we compared the drying of heterotrophic Chorella vulgaris with both innovative (agitated thin film drying (ATFD), pulse combustion drying (PCD) and solar drying (SolD)) and commonly used drying techniques (spray drying (SprD) and freeze drying (FD)). To evaluate the impact on protein quality, we evaluated techno-functional properties, in vitro digestibility (INFOGEST) as well as protein denaturation using differential scanning calorimetry (DSC). A sensory analysis was performed by a trained expert panel, combined with headspace solid-phase microextraction (HS-SPME) - gas chromatography-mass spectrometry (GC-MS) to determine volatile organic compounds (VOCs). ATFD was found to increase techno-functional properties such as gelling, water holding and solubility as well as in vitro protein digestibility. These observations could be related to induced cell disruption and protein denaturation by ATFD. Sensory analysis indicated an increased earthy off-flavor after ATFD. Interestingly, the high-temperature PCD led to an increase in cacao odor while low-temperature FD resulted in lower flavor, odors and VOCs. These results demonstrate that protein quality and sensorial properties of C. vulgaris can be steered through the type of drying, which could help in the selection of application-specific drying methods. Overall, this work could promote the incorporation of microalgal single cell proteins in different innovative food products.


Assuntos
Chlorella vulgaris , Microalgas , Compostos Orgânicos Voláteis , Dessecação , Liofilização , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Compostos Orgânicos Voláteis/análise
13.
Food Res Int ; 182: 114194, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519165

RESUMO

Optimization procedures for industrial spray drying processes mainly rely on empirical understanding. Mechanistic understanding of the process is limited, but can be enhanced by studying the drying of single droplets. We here report on a new sessile single droplet drying platform, using two air streams to represent the inlet and outlet air of a spray dryer to simulate changing conditions in a spray dryer. Accurate temperature measurements confirmed the temperature profiles and their imposition onto a drying droplet. Single droplets of solutions containing ß-galactosidase and maltodextrin were dried with different temperature-time trajectories, with the inactivation of the enzyme as indicator for the thermal load on the droplet. The locking point is found to be an important parameter: the air temperature before this point does not influence the enzyme inactivation much, but a high air temperature after the locking point results in significant inactivation. The ß-galactosidase inactivation was also successfully predicted with a coupled drying and inactivation model.


Assuntos
Dessecação , Temperatura Alta , Temperatura , Dessecação/métodos , beta-Galactosidase
14.
Food Chem ; 448: 139075, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531300

RESUMO

Sulfur-containing compounds are responsible for the aroma of Toona sinensis shoot (TS). In this study, vacuum-freeze-drying (VFD), microwave-drying (MD), and hot-air-drying at 100 and 40 °C (HAD100 and HAD40, respectively), were applied to dehydrate perishable TS for preservation. VFD-TS retained most aroma of fresh/raw TS after rehydration. The content of sulfur-containing compounds reached to 118.00 µg/g with leading by methyl thiirane, (E,E)/(E,Z)/(Z,Z)-bis-(1-propenyl) disulfides, and (Z)/(E)-2-mercapto-3,4-dimethyl-2,3-dihydrothiophenes accounting for 86.33 %. They were undetected in the rehydrated MD-TS and HAD100-TS, as the indigenous enzymes in TS were deactivated under their dehydration conditions. Interestingly, the sulfur-containing compounds was restored by 77.47 % after the TS was treated by gamma-glutamyl transferase (GGT). Thus, the release of sulfur-containing compounds from TS could depend on GGT reaction. It was different from alliaceous vegetables relying on alliinase reaction. The results revealed the aroma formation in TS and provided an approach to enhance the aroma of TS dried by different methods.


Assuntos
Dessecação , gama-Glutamiltransferase , Dessecação/métodos , gama-Glutamiltransferase/metabolismo , Humanos , Odorantes/análise , Brotos de Planta/química , Paladar , Compostos de Enxofre/química , Compostos de Enxofre/análise , Liofilização
15.
Food Chem ; 448: 139111, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547712

RESUMO

Heme proteins and their derivatives play important roles in inducing lipid oxidation to produce volatile compounds during bacon drying. This study investigated the effects of heme proteins and their derivatives (hemoglobin, myoglobin, nitrosylmyoglobin, hemin, Fe2+, and Fe3+) on lipid and volatiles profiles in the washed pig muscle (WPM) model. The results of the study indicated that the inducers primarily caused the oxidation of glycerophospholipids. Furthermore, hemoglobin and myoglobin had the most significant impact, and their potential substrates may include PE (O-18:2/20:4), PE (O-18:1/20:4), PC (16:0/18:1), and PE (O-18:2/18:2). Nitrosomyoglobin has limited ability to promote lipid oxidation and may protect ether phospholipids from oxidation. The analysis of the volatiles in the model revealed that heme proteins and their derivatives have the ability to induce the production of key aroma compounds. The descending order of effectiveness in inducing the production of aroma compounds is as follows: hemoglobin, myoglobin, hemin, and nitrosylmyoglobin. The effectiveness of Fe2+ and Fe3+ is similar to that of nitrosylmyoglobin.


Assuntos
Hemeproteínas , Lipídeos , Animais , Suínos , Hemeproteínas/química , Hemeproteínas/metabolismo , Lipídeos/química , Produtos da Carne/análise , Compostos Orgânicos Voláteis/química , Temperatura Alta , Odorantes/análise , Oxirredução , Dessecação
16.
Protein Sci ; 33(4): e4941, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501490

RESUMO

Tardigrades are microscopic animals that survive desiccation by inducing biostasis. To survive drying tardigrades rely on intrinsically disordered CAHS proteins, which also function to prevent perturbations induced by drying in vitro and in heterologous systems. CAHS proteins have been shown to form gels both in vitro and in vivo, which has been speculated to be linked to their protective capacity. However, the sequence features and mechanisms underlying gel formation and the necessity of gelation for protection have not been demonstrated. Here we report a mechanism of fibrillization and gelation for CAHS D similar to that of intermediate filament assembly. We show that in vitro, gelation restricts molecular motion, immobilizing and protecting labile material from the harmful effects of drying. In vivo, we observe that CAHS D forms fibrillar networks during osmotic stress. Fibrillar networking of CAHS D improves survival of osmotically shocked cells. We observe two emergent properties associated with fibrillization; (i) prevention of cell volume change and (ii) reduction of metabolic activity during osmotic shock. We find that there is no significant correlation between maintenance of cell volume and survival, while there is a significant correlation between reduced metabolism and survival. Importantly, CAHS D's fibrillar network formation is reversible and metabolic rates return to control levels after CAHS fibers are resolved. This work provides insights into how tardigrades induce reversible biostasis through the self-assembly of labile CAHS gels.


Assuntos
Proteínas Intrinsicamente Desordenadas , Tardígrados , Animais , Dessecação , Tardígrados/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Géis/metabolismo
17.
Nature ; 628(8007): 342-348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538790

RESUMO

Climate change could pose an urgent threat to pollinators, with critical ecological and economic consequences. However, for most insect pollinator species, we lack the long-term data and mechanistic evidence that are necessary to identify climate-driven declines and predict future trends. Here we document 16 years of abundance patterns for a hyper-diverse bee assemblage1 in a warming and drying region2, link bee declines with experimentally determined heat and desiccation tolerances, and use climate sensitivity models to project bee communities into the future. Aridity strongly predicted bee abundance for 71% of 665 bee populations (species × ecosystem combinations). Bee taxa that best tolerated heat and desiccation increased the most over time. Models forecasted declines for 46% of species and predicted more homogeneous communities dominated by drought-tolerant taxa, even while total bee abundance may remain unchanged. Such community reordering could reduce pollination services, because diverse bee assemblages typically maximize pollination for plant communities3. Larger-bodied bees also dominated under intermediate to high aridity, identifying body size as a valuable trait for understanding how climate-driven shifts in bee communities influence pollination4. We provide evidence that climate change directly threatens bee diversity, indicating that bee conservation efforts should account for the stress of aridity on bee physiology.


Assuntos
Abelhas , Mudança Climática , Dessecação , Ecossistema , Temperatura Alta , Animais , Abelhas/anatomia & histologia , Abelhas/classificação , Abelhas/fisiologia , Biodiversidade , Tamanho Corporal/fisiologia , Aquecimento Global , Modelos Biológicos , Plantas , Polinização/fisiologia , Masculino , Feminino
18.
Environ Sci Pollut Res Int ; 31(17): 24788-24814, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526717

RESUMO

This article provides a comprehensive exploration of the imperative necessity for coupling the utilization of low-rank coal, sewage sludge, and straw. It studies the challenges and limitations of individual utilization methods, addressing the unique hurdles associated with feedstocks. It focused on achieving integrated and sustainable resource management, emphasizing efficient resource utilization, waste minimization, and environmental impact reduction. The investigation extends to the intricate details of reaction processes in co-processing, with a specific emphasis on the drying of raw materials to enhance combustion characteristics. The molding and preparation of feedstock are dissected, encompassing raw material selection, mixing, and the crucial addition of additives and binders. The proportions and homogenization of these feedstocks are intricately examined for uniformity and effectiveness. Furthermore, it presents theoretical approaches for investigating the co-combustion of these diverse feedstocks, contributing a solid foundation for future studies in this dynamic field. The findings presented in it offer valuable insights for researchers, practitioners, and policymakers seeking sustainable solutions in the co-disposal technology of these feedstocks. Therefore, it provides a holistic understanding of the challenges and opportunities in coupling the utilization of these selected feedstocks. By addressing individual limitations and emphasizing integrated resource management, the article establishes the groundwork for sustainable and efficient co-processing practices. The exploration of reaction processes gives a comprehensive framework for future research and application in the field of co-combustion technology. The insights gleaned from this study contribute significantly to advancing knowledge in the sustainable utilization of diverse feedstocks, guiding efforts towards environmentally responsible and resource-efficient practices.


Assuntos
Carvão Mineral , Esgotos , Carvão Mineral/análise , Conservação de Recursos Energéticos , Meio Ambiente , Dessecação
19.
PLoS One ; 19(3): e0299669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452127

RESUMO

To investigate the role of sugar metabolism in desiccation-sensitive seeds, we performed a natural desiccation treatment on Phoebe chekiangensis seeds in a room and systematically analyzed the changes in seed germination, sugar compounds, malondialdehyde, and relative electrical conductivity during the seed desiccation. The results revealed that the initial moisture content of P. chekiangensis seed was very high (37.06%) and the seed was sensitive to desiccation, the germination percentage of the seed decreased to 5.33% when the seed was desiccated to 22.04% of moisture content, therefore, the seeds were considered recalcitrant. Based on the logistic model, we know that the moisture content of the seeds is 29.05% when the germination percentage drops to 50% and that it is desirable to keep the seed moisture content above 31.74% during ambient transportation. During seed desiccation, sucrose and trehalose contents exhibited increasing trends, and raffinose also increased during the late stage of desiccation, however, low levels of the non-reducing sugar accumulations may not prevent the loss of seed viability caused by desiccation. Glucose and fructose predominated among sugar compounds, and they showed a slight increase followed by a significant decrease. Their depletion may have contributed to the accumulation of sucrose and raffinose family oligosaccharides. Correlation analysis revealed a significant relationship between the accumulation of sucrose, trehalose, and soluble sugars, and the reduction in seed viability. Sucrose showed a significant negative correlation with glucose and fructose. Trehalose also exhibited the same pattern of correlation. These results provided additional data and theoretical support for understanding the mechanism of sugar metabolism in seed desiccation sensitivity.


Assuntos
Dessecação , Açúcares , Açúcares/metabolismo , Dessecação/métodos , Rafinose/metabolismo , Trealose/metabolismo , Sementes/metabolismo , Germinação , Sacarose/metabolismo , Glucose/metabolismo , Frutose/metabolismo
20.
Int J Pharm ; 654: 123940, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38408551

RESUMO

This study aims to develop a new method to dry proteins based on protein-hyaluronic acid (HA) precipitation and apply the precipitation-redissolution technique to develop highly concentrated protein formulations. Lysozyme was used as a model protein and HA with various molecular weights (MW) were investigated. Under low ionic strength, low-MW HA (e.g., MW: around 5 K) did not induce lysozyme precipitation. Conversely, high-MW HA (e.g., MW: approximately from 40 K to 1.5 M) precipitated more than 90 % of lysozyme. The dried lysozyme-HA precipitates had moisture levels between 4 % and 5 %. The lysozyme-HA precipitates could be redissolved using PBS (pH 7.4, ionic strength: ∼ 163 mM). The viscosity of the reconstituted solution was dependent on HA MW, e.g., 4 cP for HA40K, and 155 cP for HA1.5 M, suggesting low-MW HA might be a proper excipient for highly concentrated solution formulations for subcutaneous/intraocular injection and high-MW HA may fit for other applications. The tertiary structure of lysozyme after the precipitation-redissolution steps had no significant difference from that of the original lysozyme as confirmed by fluorescence spectroscopy. The denaturation temperature of lysozyme after the precipitation-redissolution steps and that of the original lysozyme were close, indicating they possessed similar thermal stability. The accelerated stability study revealed that lysozyme stored in the dry precipitates was more physically stable than that in the buffer solution. Overall, this new drying technique is suitable for drying proteins and exhibits several benefits such as minimum energy consumption, cost effectiveness, high production yield, and mild processing conditions. In addition, the precipitation-redissolution technique proposed in this study can potentially be used to develop highly concentrated formulations, especially for proteins experiencing poor stability in the liquid state.


Assuntos
Ácido Hialurônico , Muramidase , Ácido Hialurônico/química , Muramidase/química , Proteínas/química , Dessecação/métodos , Composição de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...